TUTORIAL-4

Q1:- If 8 bits register $\mathrm{R}=10110011$, Perform
(I) $R<-$-ashr R,
(II) $R<-$-ashl R, and
(III) Determine values for ashr R and ashl R
(IV) State whether there is overflow or not in case of ashl R

Overflow in case of ashl R, because MSB are 1,0 then taking XOR of 10 is $\mathrm{V}=1$

Q2:- If 8 bits register $A=01110001$ and $B=10001001$, Perform :-
(I) Selective set operation,
(II) Selective complement operation
(III) Selective clear operation
(IV) Mask operation
(V) Clear operation
(VI) Insert operation, by setting low order 4 bits of A to 1111

Q3:- Starting from an initial value of 8 bits register $R=01010101$, Determine the values in R after performing six times logical shift left.

Q4:- What is the value of output H in shifter, if H is 1001 , $\mathrm{S}=1, \mathrm{Ir}=1$ and $\mathrm{IL}=0$. ?

Q5:- Starting from an initial value of $R=11011101$, determine the sequence of binary values in R after performing a logical shift-left, followed by a circular shift right, followed by a logical shift right and a circular shift left ?

$\mathrm{R}=11011101$

Logical shift left: 10111010
Circular shift right: 01011101

Logical shift right:
Circular shift left: 01011100

Q6:- Insert binary value 0101 into the high order four bits of register A, If initial value of $A=1100010101011100$. Determine new A ?

Q7:- Draw the block diagram for the hardware that implements the following statements:

$$
x+y z: \quad A R \leftarrow A R+B R
$$

where $A R$ and $B R$ are two n-bit registers and x, y, and z are control variables. Include the logic gates for the control function. (Remember that the symbol + designates an OR operation in a control or Boolean function but that it represents an arithmetic plus in a microoperation.)

Q8:- Show the hardware that implements the following statement. Include the logic gates for the control function and a block diagram for the binary counter with a count enable input.

$$
x y T_{0}+T_{1}+y^{\prime} T_{2}: \quad A R \leftarrow A R+1
$$

Q9:- Register A holds the 8-bit binary 11011001. Determine the B operand and the logic microoperation to be performed in order to change the value in A to:
a. 01101101
b. 11111101

Q9:-
(a) $A=11011001$
$B=10110100 \bigoplus$
$A \leftarrow A \bigoplus B 01101101$
$A=11011001$
$B=11111101$ (OR)
$11111101 \mathrm{~A} \leftarrow \mathrm{AVB}$

A group of bits that tell the computer to perform a specific operation is known as
a. Instruction code
b. Micro-operation
c. Accumulator
d. Register

The load instruction is mostly used to designate a transfer from memory to a processor register known as
a. Accumulator
b. Instruction Register
c. Program counter
d. Memory address Register

